NEONICOTINOID RESIDUES IN WILDFLOWERS, A POTENTIAL ROUTE OF CHRONIC EXPOSURE FOR BEES

CRISTINA BOTÍAS, Arthur David, Julia Horwood, Alaa Abdul-Sada, Elizabeth Nicholls, Elizabeth M Hill, and Dave Goulson

Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.5b03459 • Publication Date (Web): 06 Oct 2015

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
DURING OILSEED RAPE BLOOMING

OSR pollen

Wildflower pollen

7.2 ng/g

Neonicotinoid residues in pollen brought to the hives

71.8 ng/day

AFTER OILSEED RAPE BLOOMING

6.9 ng/g

11.1 ng/day
NEONICOTINOID RESIDUES IN WILDFLOWERS, A POTENTIAL ROUTE OF CHRONIC EXPOSURE FOR BEES

Cristina Botías1*, Arthur David1, Julia Horwood1, Alaa Abdul-Sada1, Elizabeth Nicholls1, Elizabeth Hill1, Dave Goulson1

1School of Life Sciences, Sussex University, Falmer BN1 9QG, UK.

*Correspondence to: C.Botias@sussex.ac.uk. Phone: +44(0)1273872757

Keywords: Neonicotinoids; Pollinators; Oilseed Rape; Wildflowers; Environmental Contamination
Abstract

In recent years, an intense debate has been generated about the environmental risks posed by neonicotinoids, a group of widely-used, neurotoxic insecticides. When these systemic compounds are applied to seeds, low concentrations are subsequently found in the nectar and pollen of the crop, which are then collected and consumed by bees. Here we demonstrate that current focus on exposure to pesticides via the crop overlooks an important factor – throughout spring and summer, mixtures of neonicotinoids are also found in the pollen and nectar of wildflowers growing in arable field margins, at concentrations that are sometimes even higher than those found in the crop. Indeed the large majority (97%) of neonicotinoids brought back in pollen to honey bee hives in arable landscapes was from wildflowers, not crops. Both previous and ongoing field studies have been based on the premise that exposure to neonicotinoids would only occur during the blooming period of flowering crops and that it may be diluted by bees also foraging on untreated wildflowers. Here, we show that exposure is likely to be higher and more prolonged than currently recognized due to widespread contamination of wild plants growing near treated crops.

Introduction

Bees currently face many interacting pressures including loss of habitat and concomitant reductions in the availability of flowers and nest sites, impacts of parasites and pathogens (both native and introduced), and exposure to pesticides.\(^1\) The contribution of pesticides, and in particular neonicotinoids, to pollinator declines has led to controversy across the United States and Europe.\(^2\) Laboratory and semi-field studies on honey bees and bumblebees suggest that exposure of colonies to concentrations approximating those found in pollen and nectar of flowering crops can impair pollen collection, increase worker mortality, weaken immune function, reduce nest growth and the production of new queens.\(^3-6\) However, a key point of controversy is whether bees consume enough of these compounds during the flowering period of the crop to do them significant harm. It has thus been argued that the levels of exposure used in these studies may be higher than most bee colonies are likely to experience in the field, based on the premise that exposure to neonicotinoids from flowering crops will be diluted by bees also foraging on untreated wildflowers.\(^7\) Moreover, it has been shown that the concentrations of neonicotinoid residues present in food stores are extremely variable, going from no detectable levels to more than 200 ng/g in bee stored pollen.\(^6-10\) Some field studies where honey bee hives were exposed to plots of treated crops for the duration of their flowering period found no measurable impact on colony health.\(^11-14\) A recent well-replicated and realistic field study found that exposure to a treated oilseed rape crop for one season was not enough to have measurable adverse effects on honey bee colonies, but did have profound effects on bumblebee nests and on reproduction of solitary bees, suggesting that honey bees may be more able to cope with exposure to neonicotinoids than wild bees.\(^14\)

Here, we present data on environmental contamination with neonicotinoids from five predominantly arable farms in East Sussex, UK. We sampled soil from fields under neonicotinoid-treated winter oilseed rape (OSR) in spring 2013, and also soil from beneath the herbaceous vegetation in the field margins of both OSR and winter wheat crops. We
sampled by hand the pollen and nectar of the OSR crop, and of the wildflowers growing in
the margins of both winter wheat and OSR fields through the spring and summer. We also
placed honey bee colonies on these farms and sampled the pollen returned to the hives, to
estimate the level of exposure to neonicotinoids. Finally, we analysed samples of
neonicotinoid-dressed seeds, and of crop seeds untreated with neonicotinoids for sowing
during the EU moratorium. The objectives of this study were to evaluate the environmental
contamination caused by the application of neonicotinoid seed treatments in conventional
arable farms and to examine the role of non-target vegetation as a source of exposure to
neonicotinoid residues for bees.

Materials and Methods:

1. SAMPLE COLLECTION METHODS

1.1. Sampling locations

Seven winter-sown oilseed rape (sown at the end of August 2012) and five winter-sown
wheat (WW, sown at the end of September 2012) fields were selected at random from five
conventional farms located in East Sussex, South-East England, UK. The selected fields had
varying cropping history following normal farming practices in the region (the predominant
crops being WW and OSR). Previous crops had been treated with a range of pesticides,
including use of neonicotinoids each year for at least the three previous years (SI Table S1a-
S1g). The seeds from the OSR fields were all treated with Cruiser® seed dressing in 2012
(active ingredients: 280 g/L thiamethoxam, 8 g/L fludioxonil and 32.2 g/L metalaxyl-M) and
the WW was treated with Redigo® Deter® (a.i.: 50 g/L prothioconazole and 250 g/L
clothianidin) following normal farming practice.

1.2. Analysis of commercial oilseed rape, wheat and barley seeds.

In order to determine relative concentrations of neonicotinoid insecticides in commercial
seeds routinely used in UK farmland we tested one sample of rape seeds treated at a
purported rate of 4.2 g a.i. thiamethoxam per kg seed (Cruiser OSR®), and one wheat sample
with 0.5 g a.i. clothianidin per kg seed (Redigo® Deter). Additionally, fungicide only treated
seeds were analysed, using oilseed rape seeds treated with Agrichem® HY-PRO Duet (a.i.
150 g/L prochloraz, 333 g/L thiram), oilseed rape seeds treated with Beret Multi® (a.i. 25 g/L
fludioxonil, 25 g/L flutriafol), and barley seeds treated with Kinto® (a.i. 20 g/L triticonazole,
60 g/L prochloraz).

1.3. Soil sampling.

Soil samples were collected from the 7 OSR fields ten months after sowing (June 2013).
Three sites of 50 m² were sampled in each field, sites being at least 100 m apart. Within each
site, 15 x 20 g subsamples were collected at 0 – 10 cm depth and pooled to minimise
variation due to small-scale heterogeneity in pesticide concentrations.

Soil from the margins was also sampled from all four margins of 5 of the OSR fields and 5
WW fields. As above, each sample comprised a pool of 15 subsamples collected along the
length of the margin at 0-10 cm depth. The average sample distance from the crop edge was
1.5 m (range 1-2 m). Only soil samples from the margins where neonicotinoid pesticides were detected in wildflowers were analysed (24 of 120 samples). Field margin soil samples were only analysed if neonicotinoids were detected in wildflowers in that margin, since our goal was to examine whether soil was a plausible route for contamination of the flowers. All soil samples were stored on ice in coolers in the field and then frozen immediately in the laboratory and kept at -80°C.

1.4. Pollen and nectar samples collected from oilseed rape plants.

Nectar and pollen samples were collected during the period of rape blooming (from the 19th of May to 27th of June 2013) directly from rape flowers in the 7 OSR fields using the same three sampling sites per field as for the soil samples. Additional details are provided in the Supporting Information (SI).

1.5. Pollen and nectar samples collected from wild plants in the field margins.

Field boundaries in the region typically consist of a hedge of woody plants separated from the crop by a 0-2 m strip of herbaceous vegetation. Samples of pollen and nectar were collected from the wild flowers that were present in the field margins and hedge choosing representatives of the main plant families of which honey bees and other bees feed, using the same methodology as for OSR plants (see SI). A total of 57 nectar samples and 188 pollen samples from 54 different plant species were gathered from the same field margins where the soil samples were collected. The species of wildflowers collected varied considerably and depended upon which species were available. The average sample distance from the crop edge was 1.5 m (range 1-2 m). When the weight of pollen samples or the volume of nectar samples were not high enough to be analysed separately, samples from different species growing in the same or neighbouring margin were pooled and analysed as a single sample. In total, 55 out of 98 of the wildflower pollen samples (56.1%), and 21 out of 32 of the wildflower nectar samples (67.7%) could be analysed as single species, and the rest were all analysed as pooled samples from different species (see SI Tables S2a-S2j and Tables S8a-S8b).

1.6. Pollen collected by honey bees.

Five honey bee (Apis mellifera) colonies (1 hive per farm) were placed in the vicinity of OSR fields at the beginning of the OSR flowering period (May 2013), and remained at the same sites until the end of August 2013. The hives were equipped with pollen traps during 4 consecutive days at the beginning of June 2013, and for 4 days in mid-August 2013 in order to collect pollen loads from the returning honey bee foragers during the OSR blooming period, and also when no OSR was in flower. After 4 days, the traps were removed and the honey bee collected pollen loads were stored on ice and then at -80°C in the laboratory until analysis. Pollen loads within each sample were sorted by eye according to colour, texture, size and shape as indicators of different pollen types. All pollen types were separately weighed to calculate their relative abundance within the samples. A representative sample of loads from each pollen type was mounted and pollen grains were identified under a microscope following standard methods and using reference specimens and published reference collections.
1.7. Residue analysis

- Sample preparation for neonicotinoid analyses

All samples were analysed for concentrations of thiamethoxam (TMX), clothianidin (CLO), imidacloprid (IMC) and thiacloprid (THC). Additional details are provided in the Supporting Information.

Soil and seed samples

One hundred grams of each soil sample was homogenised and sieved (2 mm), and 100 g of seed samples were ground to a fine powder with a mortar and pestle. An aliquot of soil or seed samples (0.5 g ± 0.5 g for both matrices) was spiked with 1 ng of the deuterated pesticides in ACN and extracted using the QuEChERS method. First, 2 ml of water was added to form an emulsion and samples were then extracted by adding 2.5 ml of ACN and 750 µl of hexane and mixing on a multi axis rotator for 10 minutes. Then, 1.25 g of magnesium sulphate: sodium acetate mix (4:1) was added to each tube in turn with immediate shaking to disperse the salt and prevent clumping of the magnesium salt. After centrifugation (13,000 RCF for 5 min), the supernatant was removed into a clean Eppendorf tube containing 625 mg of Supel™ QuE PSA/C18/ENVI-Carb and vortexed. The aqueous phase and salt pellet were extracted again using 1.75 ml ACN and the supernatant combined with the previous ACN extract. The extract was mixed with PSA/C18/ENVI-Carb on a multi axis rotator (10 min) and then centrifuged (10 min). The supernatant was transferred into a glass tube, evaporated to dryness under vacuum, reconstituted with 200 µl of ACN:H₂O (10:90) and spin filtered (0.22 µm). Seed samples were then further diluted in order to be able to determine thiamethoxam and clothianidin concentrations. An aliquot of 1.5 g of each wet soil sample was dried for 24 hours at 105°C to determine the water content, and neonicotinoid concentrations were expressed as ng/g dry weight of soil.

Pollen

One hundred milligrams of pollen sample was weighed into an Eppendorf tube and 150 pg of deuterated pesticides in ACN were added and the samples were extracted using the QuEChERS method. The same ratio of solvents, salts and PSA/C18/ENVI-Carb per g of sample as for the soil extractions was used (i.e., 400 µl of water, 500 µl of ACN, 150 µl of hexane, 250 of magnesium sulphate: sodium acetate mix (4:1) and 125 mg of PSA/C18/ENVI-Carb). After the first extraction, the aqueous phase and resuspended pellet were extracted again with 400 µl of ACN and the supernatants combined. Extracts were mixed with PSA/C18/ENVI-Carb (10 min) and centrifuged (10 min). The supernatant was evaporated to dryness under vacuum, reconstituted with 120 µl of ACN:H₂O (10:90) and filtered as above.

Nectar

Nectar in the capillary tube was expelled into an Eppendorf tube and the capillary was then flushed in 100 µl of H₂O:ACN (90:10) and combined with the nectar sample. The nectar samples were centrifuged at 13,000 relative centrifugal force (RCF) for 10 min to remove pollen and plant debris and the supernatant (between 10 and 110 µl dependent on collection volume) transferred into a clean Eppendorf tube and made up to 200 µl using H₂O:ACN.
Fifty pg of deuterated pesticide standard mixture was added to 200 µl diluted nectar and the samples were extracted using the first step of the QuEChERS method. For this, 250 µl of ACN were added and samples were extracted on a multi axis rotator for 10 min. Then 125 mg of magnesium sulphate: sodium acetate mix (4:1) was added, shaken (3 min) and centrifuged (13,000 RCF, 5 min). The supernatant was removed and the aqueous phase extracted again with 250 µl of ACN and the supernatants combined. Samples were reconstituted in 50 µl of H₂O:ACN (90:10), centrifuged (13,000 RCF, 10 min) prior to UHPLC-MS/MS analysis.

**UHPLC-MS/MS analyses**

Ultra high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) analyses were carried out using a Waters Acquity UHPLC system coupled to a Quattro Premier triple quadrupole mass spectrometer from Micromass (Waters, Manchester, UK). Samples were separated using a reverse phase Acquity UHPLC BEH C18 column (1.7 µm, 2.1 mm × 100 mm) fitted with a ACQUITY UHPLC BEH C18 VanGuard pre-column (130Å, 1.7 µm, 2.1 mm X 5 mm) maintained at 22 °C. Injection volume was 20 µl and mobile phase solvents were 95% water, 5% ACN, 5 mM ammonium formate, 0.1% formic acid (A) and 95% ACN, 5% water, 5 mM ammonium formate, 0.1% formic acid (B). Initial ratio (A:B) was 9:10 and separation was achieved using a flow rate of 0.2 ml/min with the following gradient: 9:10 to 70:30 in 10 min; then from 70:30 to 0:100 in two minutes and held for 7 min, and return to initial condition and equilibration for 7 min.

MS/MS was performed in Multiple Reaction Mode (MRM) using ESI in the positive mode and two characteristic fragmentations of the deprotonated molecular ion [M+H]⁺ were monitored; the most abundant one for quantitation and the second one used as a qualifier. Retention times, ionisation and fragmentation settings are reported as SI Table S5. Other parameters were optimised as follows: capillary voltage −3.3 kV, extractor voltage 8 V, multiplier voltage 650 V, source temperature 100 °C, desolvation temperature 300 °C. Argon was used as collision gas (P collision cell: 3×10⁻³ mbar), while nitrogen was used as desolvation gas (600 L/h). Mass calibration of the spectrometer was performed with sodium iodide. Samples were analysed in a random order and QC samples (i.e. standards) were injected during runs every 10 samples to check the sensitivity of the machine. Data were acquired using MassLynx 4.1 and the quantification was carried out by calculating the response factor of neonicotinoid compounds to their respective internal standards. Concentrations were determined using a least-square linear regression analysis of the peak area ratio versus the concentration ratio (native to deuterated). At least five point calibration curves (R²> 0.99) were used to cover the range of concentrations observed in the different matrices for all compounds, within the linear range of the instrument. Method detection and quantification limits (MDL and MQL, respectively) were determined from spiked samples which had been extracted using the QuEChERS method. Non-spiked samples were also prepared. MDLs were determined as the minimum amount of analyte detected with a signal-to-noise ratio of 3 and MQLs as the minimum amount of analyte detected with a signal-to-
noise ratio of 10, after accounting for any levels of analyte present in non-spiked samples (SI Table S6a).

**Quality control**

One blank workup sample (i.e. solvent without matrix) per batch of eleven samples was included and injected on the UHPLC-MS/MS to ensure that no contamination occurred during the sample preparation. Solvent samples were also injected between sample batches to ensure that there was no carryover in the UHPLC system that might affect adjacent results in analytical runs. Several replicates per site were analysed and all samples in which pesticides were detected were extracted and analysed at least in duplicate for confirmation. Identities of detected neonicotinoids were confirmed by comparing ratio of MRM transitions in samples and pure standards. The QuEChERS method is used routinely for neonicotinoid analyses (e.g. 24) and recovery experiments performed on spiked (1 ng/g dw, n=4), pollen (1.2 ng/g dw, n=4) and soil samples (10 ng/g dw, n=4) gave absolute recovery values ranging from 85 ± 8 to 111 ± 5% for the four pesticides in agreement with other published studies22,23 (SI Table S6b). The concentration of any pesticides detected in unspiked samples was also determined and subtracted from the spiked concentration to estimate the true recovery of the test chemical. Finally, gas chromatography tandem mass spectrometry was also used to confirm the high thiamethoxam concentrations observed in some wildflower pollen samples (see Supporting Information).

1.8. Statistical analysis

All statistical analyses were carried out using SPSS 21 software. To test for differences in the concentrations of the neonicotinoids in soil from OSR fields and field margins a two-way ANOVA procedure was used (OSR fields 1 to 5, where samples from both cropland and margins were collected) with the origin of samples (cropland or field margins) as fixed factors and the concentrations for the different neonicotinoids (TMX, CLO, IMC, THC and total neonicotinoid residues) as response variables. When no statistically significant interaction was found, this term was removed from the model and the analysis was rerun to test for the main effects of the fixed factors, using Tukey post hoc test for multiple comparisons.

One-way ANOVA procedure was used to test for possible differences in concentrations of neonicotinoid residues among the 7 fields where OSR pollen samples were collected (OSR fields 1-7), followed by Tukey or Tamhane post hoc tests for multiple comparisons depending on the homogeneity of variance in each case (determined using Levene’s test). Levels in nectar were also compared among the 7 OSR fields using Kruskal-Wallis test (K-W) due to non-normality in the distribution of the data.

Non-parametric Mann-Whitney U-tests (M-W) were used to compare the concentrations of neonicotinoids present in pollen and nectar collected from OSR flowers; to compare pollen and nectar collected from OSR flowers vs. pollen and nectar from wildflowers growing in the OSR field margins; for pollen collected from wildflowers growing in OSR field margins vs. wildflowers from WW field margins; for pollen collected from wildflowers growing in the OSR and WW margins vs. honey bee collected pollen of wildflower origin; and for pollen
collected by the honey bees in June vs. collected in August. To perform the statistical analyses, all concentrations that were over the limits of detection (≥MDL) but below the limits of quantification (<MQL) were assigned the value considered as the MDL in each case (SI Table S65a). Concentrations below the MDL were considered to be zero.

Pearson’s coefficient of correlation (for normally distributed data) and Spearman’s rank correlation (for data not normally distributed) were used to assess the relationship among levels of neonicotinoids in nectar, pollen and soil from collected in the OSR fields. When the relationship between levels in nectar and pollen or soil was evaluated, as the number of samples for nectar was reduced from 21 to 13 due to small volumes for some samples, the number of data for pollen (N = 21) and soil (N = 21) was reduced accordingly by calculating means where necessary. The number of samples was not reduced when the relationship in the levels of neonicotinoids was evaluated between pollen and soil.

The coefficient of variation (CV) in the concentrations of neonicotinoids found in OSR pollen and OSR nectar, and in wildflower pollen was used to analyse the consistency in the levels found in these sets of samples, using t-tests to compare between the variability found in OSR pollen vs. OSR nectar, and in OSR pollen vs. wildflower pollen.

The diversity of plant taxa represented in pollen collected by honey bees per site and sampling period was calculated using Simpson’s index of Diversity (1-D).²⁴

Results and Discussion

- Soil samples from OSR cropland and margins, and WW field margins.

All soil samples taken under OSR (N = 21) tested positive for thiamethoxam, which was the dressing applied to the seeds of the current crop, and for clothianidin, a breakdown product of thiamethoxam (Table 1). However, samples also all tested positive for imidacloprid and 42.9% tested positive for thiacloprid, though these two compounds had not been applied in the previous three years (SI Tables S1a-S1g). The field margin soils adjacent to OSR (N = 16) also all contained thiamethoxam and clothianidin, but the concentrations of these two compounds were significantly lower to the ones found in soil from OSR cropland (two-way ANOVA: F(1,25) = 12.78, P = 0.001, η²p = 0.338 (thiamethoxam); F(1,25) = 14.51, P = 0.001, η²p = 0.367 (clothianidin)). Imidacloprid was detected in all but one (93.8%) of the OSR margins, and thiacloprid, with lower levels in margins than in cropland as well (two-way ANOVA: F(1,25) = 1.326, P = 0.260, partial η²p = 0.05 (imidacloprid); F(1,25) = 7.18, P = 0.013, partial η²p = 0.223), was present in 25% of the samples. The insecticide applied as seed dressing in the WW fields was also found in all the soil samples from the WW margins (clothianidin; N = 8; Table 1) together with imidacloprid in 75% of the samples, thiamethoxam in 50% and thiacloprid in 25% of them. This widespread prevalence both in cropland and in field margins is to be expected given the high persistence of these compounds in soils²⁵,²⁶ and their high potential for lateral movement and leaching.²⁷–²⁹
organic matter and mineral clay content, but as these features were not evaluated in our samples, their role in the persistence and concentrations found cannot be elucidated.

- Pollen and nectar samples collected from OSR plants.

Thiamethoxam used in the seed dressing was present in all pollen samples (21/21) and a majority of nectar samples (7/13) collected from the OSR crops, at concentrations similar to those found in previous studies and with no differences in the values for both matrices (mean ng/g ± SD: 3.26 ± 2.16 ng/g in pollen, 3.20 ± 4.61 ng/g in nectar; M-W test: $U(32) = 90$, $P > 0.05$, $Z = -1.65$; Table 2). Maximum concentrations were 11.1 and 13.3 ng/g for pollen and nectar, respectively. In addition to thiamethoxam, 90.5% of the pollen samples contained clothianidin and 85.7% contained thiacloprid. Regarding OSR nectar, 53.9% of the samples presented thiacloprid, with lower levels than in pollen (M-W test: $U(32) = 50.0$, $P = 0.002$, $Z = -3.09$), and 30.8% contained clothianidin. The concentrations of the neonicotinoids detected in the different samples were similarly highly variable for pollen and nectar ($C\text{V}_{\text{OSR pollen}} = 82.75 ± 66.04\%$; $C\text{V}_{\text{OSR nectar}} = 118.45 ± 81.14\%$ for nectar; t-test: $t(6) = -0.681$, $P = 0.521$), and didn’t show differences among the 7 fields where they were collected (e.g. TMX in pollen samples: ANOVA, $F(6) = 2.46$, $P = 0.078$; TMX in nectar samples: K-W, $H(6) = 10.12$, $P = 0.120$). Furthermore, the concentrations for thiamethoxam in pollen were positively correlated with the concentrations in the soil samples collected from the same sites (Pearson correlation coefficient: $r(19) = 0.52$, $P = 0.017$; SI Fig. S1), but the same correlation was not found for nectar (Spearman’s rank correlation: $\rho(11) = -0.12$, $P = 0.70$).

- Pollen and nectar samples from wild plants in the field margins.

Pollen collected by hand from wildflowers in OSR field margins frequently contained thiamethoxam (58% of 43 samples), sometimes at high concentrations, as in the case of a pollen sample from Heracleum sphondylium (86 ng/g) collected in margin M2 of OSR field 4, and one from Papaver rhoeas (64 ng/g) collected in margin M2 of OSR field 1 (SI Tables S2a and S2d). However, neonicotinoid residues were not always detected in pollen samples of the same species collected from different field margins (SI Tables S2a-S2j). The possible heterogeneity in soil properties and environmental factors along the field margins (e.g. organic matter content, microbial communities, humidity, degree of slope, sunlight exposure) may have influenced the persistence of neonicotinoids and their sorption onto soil particles in specific sites, thus resulting in a differential exposure and uptake of these active ingredients by field margin plants growing in different field locations.

Overall, the total concentration of neonicotinoids present in the pollen from wildflowers in the OSR field margins were higher than in pollen from the treated OSR plants (M-W test: $U(62) = 287.0$, $P = 0.018$, $Z = -2.37$; Fig. 1), though as might be expected when testing a range of different plant species, levels were more variable in wildflower samples ($C\text{V}_{\text{wildflower pollen}} = 350.35 ± 189.31\%$; $C\text{V}_{\text{OSR pollen}} = 82.75 ± 66.04\%$; t-test: $t(6) = -2.669$, $P = 0.037$). The higher residue levels detected in wildflower pollen was mainly due to the significantly greater concentrations of thiamethoxam when compared to OSR pollen (M-W test: $U(62) = 302.0$, $P = 0.03$, $Z = -2.165$). In contrast, clothianidin and thiacloprid were typically found at lower concentrations than in the crop (M-W test: $U(62) = 61.0$, $P < 0.001$, $Z = -6.36$).
(clothianidin); $U(d2) = 70.0, P < 0.001, Z = -6.64$ (thiacloprid); Fig. 1). Imidacloprid, absent in OSR pollen, was detected in 11.6% of the wildflower pollen samples.

Residues of thiamethoxam, imidacloprid and thiacloprid were detected in pollen collected from wildflowers adjacent to winter wheat fields, but the levels were lower (total neonicotinoid residues = $0.17 \pm 1.01 \text{ ng/g}$) than in wildflowers growing in OSR field margins (total neonicotinoid residues = $15.40 \pm 25.45 \text{ ng/g}$; M-W test: $U(96) = 507.0, Z = -5.75, P < 0.001$). The seed-treatment in the winter wheat fields, clothianidin, was not detected in any of the pollen or nectar samples gathered from wildflowers growing in the WW field margins (Table 2) despite being present in the soil beneath this margin vegetation (Table 1). Thiamethoxam is more soluble in water ($4.1 \text{ g/L}$) than clothianidin ($0.30-0.34 \text{ g/L}$),$^{31}$ and thus it may have better systemic properties, increasing the probability for the uptake of this compound by plants in comparison with clothianidin.

Only 20.8% (5 out of 24 samples) of the nectar samples obtained from wildflowers adjacent to OSR crops contained thiamethoxam, and the concentrations for this compound ($0.10 \pm 0.37 \text{ ng/g}$; Table 2) were significantly lower than for OSR nectar ($3.20 \pm 4.61 \text{ ng/g}$; M-W test: $U(35) = 94.5, P = 0.049, Z = -2.3$; SI Tables S8a-S8b). We also found clothianidin in 20.8% of the nectar samples and thiacloprid in 25%, the latter presenting lower levels (all detected levels were below MQL) than in OSR nectar ($0.24 \pm 0.36 \text{ ng/g}$; M-W test: $U(35) = 90.0, P = 0.036, Z = -2.47$). The number of nectar samples obtained from wildflowers adjacent to WW was low ($N = 8$) and none of them contained neonicotinoids residues. The lower prevalence of neonicotinoid residues in nectar samples in comparison with pollen both in OSR flowers and in wildflowers growing in the field margins may be due to the shorter half-life of these compounds in aqueous matrices due to higher hydrolysis, photolysis and microbial degradation.$^{32}$

Given that field-margin soils were found to be consistently contaminated with all of the commonly-used neonicotinoids, this is the mostly likely source of wildflower contamination. Three previous studies have demonstrated neonicotinoid contamination of wild plants growing in field margins or surrounding areas of seed-treated crops, but in these studies the whole flower was analysed$^{33}$ or the information about the part of the plant analysed was not provided,$^{14,34}$ so the concentrations found in the nectar or pollen and subsequent exposure to bees was not clear. Our study marks a significant step towards understanding the prevalence and concentrations of neonicotinoid residues present in pollen and nectar from non-target plants, which are essential foraging sources for bees.$^{35}$

- Pollen collected by honey bees.

Pollen traps were used to collect pollen brought back to honey bee hives placed on the five farms, both during the OSR blooming period (beginning of June 2013), and later in the summer (mid-August 2013). Identification of pollen types revealed that the majority of pollen collected by honey bees in June was *Crataegus monogyna* (62.5%), with just 9.9% of pollen coming from OSR (SI Tables. S3a-S3b). Previous studies have indicated that honey bees may not use OSR flowers as a major source of pollen$^{36}$ but their frequent presence as pollinator visitors in OSR crops$^{37-39}$ could indicate that they may forage in OSR flowers mainly to
collect nectar. In August the pollen loads were more diverse (Simpson’s index of Diversity: $1-D = 0.85$) than in June ($1-D = 0.54$), comprising a range of wildflowers with *Epilobium hirsutum* (23.1%) and *Rubus fruticosus* (13.5%) the most visited plants. Honey bee collected wildflower pollen commonly contained thiamethoxam, clothianidin, imidacloprid and thiacloprid, but mean concentrations of total neonicotinoid residues were generally lower (mean ± s.d.: $1.48 \pm 4.56$ ng/g) compared to pollen collected by hand from field margin wildflowers ($6.85 \pm 18.40$ ng/g; M-W test: $U(171) = 2635.0$, $P = 0.001$, $Z = -3.389$) or from the crop ($7.20 \pm 5.08$ ng/g; $U(94) = 110.5$, $P < 0.001$, $Z = -6.037$; Fig. 2). This is to be expected since bees will have been foraging over a large area, visiting patches of wildflowers that were not adjacent to crops, resulting in a dilution effect. It is notable that a significant drop in the concentrations of neonicotinoids detected in wildflower pollen was observed between June ($3.09 \pm 6.45$ ng/g) and August ($0.20 \pm 0.43$ ng/g; M-W test: $U(78) = 339.0$, $P < 0.001$, $Z = -4.358$), perhaps suggesting a reduction in plant tissue concentrations through summer due to photolysis and increasing temperatures.

Of the total neonicotinoid residues present in the pollen collected by honey bees in June (287 ng in 514 g of pollen; 0.56 ng residues/g pollen), only 3% had its origin in the OSR pollen, the remaining 97% coming from wildflowers. In August, all identified pollen taxa were wild plants (SI Fig. S1), residue levels were lower than in June, but also the amount of pollen collected was smaller (44.28 ng of residues in 224.84 g of pollen; 0.20 ng residues/g pollen). If one considers these values in terms of the quantity of neonicotinoid residues entering hives per day, honey bee foragers brought back an amount of 71.8 ng of residues per day in June, and 11.1 ng per day in August. According to current understanding, these concentrations are lower than those likely to cause significant harm to honey bee colonies in the short term as for instance the oral LD$_{50}$ values (dose required to kill 50% of a population of test animals in 48 h) for thiamethoxam and clothianidin in honey bees are 5 ng/bee and 3.7 ng/bee respectively. Considering the mean values for neonicotinoid content in corbicular pollen collected during oilseed rape bloom in this study (0.56 ng/g), a honey bee would need to eat around 10 g of pollen to obtain an LD$_{50}$ dose, which is unlikely since honey bees consume less than 10 mg of pollen per day. However, it should be noted that these figures do not include the residues brought back to the hive in nectar, and that a long-term chronic exposure to field realistic sub-lethal levels of thiamethoxam (5.31 ng/g) and clothianidin (2.05 ng/g) has been shown to cause an impact on honey bee colony performance and queen supersede. It is also worth mentioning that the number of colonies we used to evaluate levels and origin of exposure to neonicotinoids on honey bee colonies was limited, and since the overall foraging pattern may differ among colonies placed on the same landscapes due to varying factors, a different outcome cannot be discarded with another experimental design. Likewise, exposure of other bee species in this landscape will depend on their foraging range and floral preferences, and may be quite different.

- Commercial oilseed rape, wheat and barley seeds.

Analysis of thiamethoxam-dressed OSR seeds revealed contamination with clothianidin (a breakdown product of thiamethoxam) but also imidacloprid and thiacloprid (SI Table S4). Most surprisingly, samples of OSR, winter wheat and barley seeds that had not been treated
with neonicotinoids and had been dressed only with fungicides also contained residues of various mixtures of neonicotinoids, albeit at much lower concentrations than found in dressed seeds. This may result either from contamination via the machinery used to dress or to count the seeds, as suggested in a previous study where a similar contamination was detected in cotton seeds, or perhaps residues remaining from treatments to the crop from which the seeds were harvested. The role of these additional neonicotinoid residues present in coated seeds as a potential source of environmental contamination warrants further research.

Previous field studies of the impacts of neonicotinoids on bee colonies have often suffered from contamination of control colonies. Our study provides a potential explanation for this widespread presence of residues in bee colony food stores; much of the exposure of free-flying bees is likely to be via residues in wildflowers, which cannot readily be manipulated. In these circumstances we would not expect any differences in the performance of colonies placed next to experimental plots of treated versus untreated crops, unless the experiment is performed in a landscape where minimal neonicotinoids have been used previously.

Farmers are often encouraged to sow wildflower strips in arable field margins as a means of boosting pollinator populations and to attract and conserve natural enemies of arthropod pests. Our data suggest that such wildflowers are likely to be contaminated with neonicotinoids; whether the benefits accrued from providing more food and suitable habitat would exceed the cost via impacts of the pesticide is unclear. However, when possible, it would seem best to promote the creation of wildflower patches that are not adjacent to treated crops or on soil in which treated crops have previously been grown to avoid exposure to neonicotinoid residues via this route.

Overall, our results demonstrate that the application of neonicotinoid seed dressings to autumn-sown arable crops results in contamination of pollen and nectar of nearby wildflowers throughout the following spring and summer, and that wildflowers were the major route of exposure for bees in this study. It has been suggested that chronic intake of neonicotinoid pesticides may lead to weakening and failure in bee colonies, but the consequences of prolonged exposure to mixtures of these compounds in wildflower pollen and nectar have not been examined by any field study conducted to date. Furthermore, widespread contamination of wild plants and soil is also likely to lead to chronic exposure of a broad range of non-target invertebrates in farmland.

Acknowledgements: We are grateful to Defra (Research Project PS2372) and BBSRC (BB/K014498/1) for funding this work, and to the five farmers for allowing us to work on their property and sharing their pesticide usage data (information available in SI Tables S1a-S1g). We also thank Martyn Stenning, Bill Hughes, Luciano Scandian, Anna Gorenflo, Jo Bunner, Alfonso Herrera Bachiller, Elinor Jax, Tom Wood, Ellen Rotheray, Kate Basley, Lena Grinsted, Julia Jones, Daniel Ingram and Rob Fowler for technical support and valuable comments.
**Supporting Information Available:** Additional details for materials and methods, and tables and figures as noted in the text. This material is available free of charge via the Internet at http://pubs.acs.org

**Conflict of interests:** The authors declare no competing financial interest.

**References:**


Environmental Protection Agency, Office of Pesticide Programs, E. F. and E. D. *White paper in support of the proposed risk assessment process for bees; 2012.*


FERA (The Food and Environment Research Agency). *Effects of neonicotinoid seed treatments on bumble bee colonies under field conditions; Sand Hutton, York YO41 1LZ, 2013.*


Fig. 1. Levels of thiamethoxam, clothianidin, thiacloprid and total neonicotinoids (TMX, CLO, IMD and THC) in pollen collected from OSR flowers and wildflowers from OSR field margins (Black horizontal bars inside boxplots are median values; upper and lower whiskers represent scores outside the middle 50%; open circles represent mild outliers and asterisks are extreme outliers).
Fig. 2. Mean levels of thiamethoxam, imidacloprid, thiacloprid and total neonicotinoid residues detected in hand collected pollen from the wildflowers present in the margins of OSR and WW fields and the mean levels in corbicular pollen of wildflower origin trapped in honey bee hives located in the vicinity of the same fields (Standard error bars are represented in the graphs, and statistically significant differences ($P < 0.05$) are marked with an asterisk).
Table 1. Number of samples analysed, percentage with detectable levels of neonicotinoid insecticides, range, mean (± Standard Deviation) and median of the levels found in soil samples collected from oilseed rape (OSR) cropland and field margins (where the seeds were treated with thiamethoxam at an application rate of 4.2 g a.i. thiamethoxam per kg seed), and from the field margins of winter wheat crops (WW, where the wheat seeds were treated with clothianidin at an application rate of 0.5 g a.i. clothianidin per kg seed). All fields were sowed with harrow power drill combination.

<table>
<thead>
<tr>
<th>ORIGIN OF SOIL SAMPLES</th>
<th>N</th>
<th>TMX</th>
<th>CLO</th>
<th>IMC</th>
<th>THC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Method detection limit (MDL)(ng/g)</td>
<td>0.04</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Method quantification limit (MQL)(ng/g)</td>
<td>0.12</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>OSR CROPLAND</td>
<td>21</td>
<td>FREQUENCY OF DETECTIONS (%)</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RANGE (ng/g)</td>
<td>0.49 - 9.75</td>
<td>5.10 - 28.6</td>
<td>0.74 - 7.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEAN ± S.D. (ng/g)</td>
<td>3.46 ± 2.98</td>
<td>13.28 ± 5.73</td>
<td>3.03 ± 2.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEDIAN (ng/g)</td>
<td>2.43</td>
<td>13.05</td>
<td>2.10</td>
</tr>
<tr>
<td>OSR FIELD MARGINS</td>
<td>16</td>
<td>FREQUENCY OF DETECTIONS (%)</td>
<td>100%</td>
<td>100%</td>
<td>93.75%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RANGE (ng/g)</td>
<td>0.28 - 1.76</td>
<td>2.25 - 13.33</td>
<td>≤ 0.07 - 7.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEAN ± S.D. (ng/g)</td>
<td>0.72 ± 0.44</td>
<td>6.57 ± 3.12</td>
<td>1.92 ± 2.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEDIAN (ng/g)</td>
<td>0.59</td>
<td>5.61</td>
<td>0.70</td>
</tr>
<tr>
<td>WW FIELD MARGINS</td>
<td>8</td>
<td>FREQUENCY OF DETECTIONS (%)</td>
<td>50%</td>
<td>100%</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RANGE (ng/g)</td>
<td>≤ 0.04 - 0.45</td>
<td>0.41 - 19.12</td>
<td>≤ 0.07 - 6.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEAN ± S.D. (ng/g)</td>
<td>0.18 ± 0.21</td>
<td>7.71 ± 6.9</td>
<td>1.36 ± 2.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEDIAN (ng/g)</td>
<td>≤ 0.12</td>
<td>7.36</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Table 2. Number of samples analysed, frequency of detections, range, mean (± Standard Deviation) and median of levels found and in pollen and nectar samples collected from oilseed rape (OSR) flowers (7 fields) and from wildflowers collected from the margins of 5 OSR and 5 winter wheat (WW) fields, and pollen collected by honey bees.

* only one sample with detectable levels of this compound.

<table>
<thead>
<tr>
<th>ORIGIN OF POLLEN SAMPLES</th>
<th>N</th>
<th>TMX (ng/g)</th>
<th>CLO (ng/g)</th>
<th>IMC (ng/g)</th>
<th>THC (ng/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSR FLOWERS</td>
<td>21</td>
<td>0.12</td>
<td>0.12</td>
<td>0.16</td>
<td>0.04</td>
</tr>
<tr>
<td>WILDFLOWERS FROM OSR MARGIN</td>
<td>43</td>
<td>0.16</td>
<td>0.36</td>
<td>0.48</td>
<td>0.12</td>
</tr>
<tr>
<td>WILDFLOWERS FROM WW MARGIN</td>
<td>55</td>
<td>3.16</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLLECTED BY HONEY BEES DURING OSR BLOOM (JUNE)</td>
<td>34</td>
<td>14.81 ± 25.17</td>
<td>0.56 ± 2.10</td>
<td>≤ 0.12-14.50</td>
<td>≤ 0.16-0.36</td>
</tr>
<tr>
<td>COLLECTED BY HONEY BEES AFTER OSR BLOOM (AUGUST)</td>
<td>46</td>
<td>≤ 0.12 ≤ 0.12 ≤ 0.16 ≤ 0.12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORIGIN OF NECTAR SAMPLES</th>
<th>N</th>
<th>TMX (ng/g)</th>
<th>CLO (ng/g)</th>
<th>IMC (ng/g)</th>
<th>THC (ng/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSR FLOWERS</td>
<td>13</td>
<td>0.10</td>
<td>0.17</td>
<td>0.17</td>
<td>0.03</td>
</tr>
<tr>
<td>WILDFLOWERS FROM OSR MARGIN</td>
<td>24</td>
<td>0.10</td>
<td>0.30</td>
<td>0.50</td>
<td>0.08</td>
</tr>
<tr>
<td>WILDFLOWERS FROM WW MARGIN</td>
<td>8</td>
<td>0.10</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
</tbody>
</table>